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ABSTRACT 

The mathematical properties of nano molecules are an interesting branch of nanoscience for 
researches nowadays. The periodic open single wall tubulene is one of the nano molecules 
which is built up from two caps and a distancing nanotube/neck. We discuss how to 
automatically construct the graph of this molecule and plot the graph by spring layout 
algorithm in graphviz and netwrokx packages. The similarity between the shape of this 
molecule and the plotted graph is a consequence of our work. Furthermore, the Wiener, 
Szeged and PI indices of this molecule are computed.  
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1 INTRODUCTION 

Carbon nanotubes exhibit a large number of new interesting phenomena, therefore many 
researches of different areas attracted to work on nanotubes [1]. They are crucial in all sorts 
of ways because of the manifold utilities they provide. One interesting feature of carbon 
nanotubes is their use as catalyst for improving the hydrogen absorption and desorption [2]. 
Some researchers are trying to use single-wall nanotubes as reservoir for storing hydrogen 
which may use as fuel by penetrating more Hydrogen atoms in the structure of the 
molecules[3,4]. One major element of energy research activities of some countries is 
reducing or eliminating the dependency on petroleum of transportation systems by 
replacing it with new fuels. Hydrogen fuel have the potential to offer cleaner, more efficient 
alternatives to today's technology [5]. Therefore, many fuel molecules, including 

                                                 
•Corresponding Author (Tel/fax +98 361 591 2495 E−mail: yoosofan@kashanu.ac.ir) 



82      

 

nanotu
types o

Simple
simpli
compr
molec
variou

iterativ
topolo

2 

Period
caps a
cutting
closed
tubule
figure 
close p

 

charac
molec
It seem
one or

                   

ubes, with d
of nanotubes

Some phy
e indirect g
icity and lac
rises import
ular graph a

us application
In this arti

ve method. 
ogical indice

 
AUTOMA

dic open sing
and a distanc
g off polar 
d tubulene C
ene is open c

of open pe
plot of this m

It is difficu
cterizations. 
ules often tr
ms that find
r two indices

                   

different feat
s molecules 

ysiochemical
graph is use
ck of some 
tant topolog
are called to
ns have been
icle, the gra
The graph 
s of the grap

ATIC GRAP

gle wall tubu
cing nanotub
hexagons w

C204(6(56)
3

(665)
3

counterpart o
eriodic tubul
molecule wh

Fi

ult to constru
Researchers

ry to find the
ing the adja
s of it. One 

                  

tures have b
which are st

l properties 
ed to mode
structural ch

gical inform
opological in
n proposed u
aph of open 
is plotted by

ph of this mo

PH CONST

ulene is one 
be/neck [9].

with the rep
 (656)

3
 7

6
 – Z[12

of closed tub
lene(((5,6,7)

hich is one of

igure 1.  Per

uct the grap
s who want 
e mathemati

acency matri
of the most 

                 A

been found a
tudied as fue
of these m

el the struct
haracteristics

mation. Num
ndices. Seve
up to now. 
periodic sin
y spring lay

olecule are c

RUCTION O

of the nano 
 Periodic cl
eat spherica
2,0] − r ); r=4,
bulene which
)3)VA) is pl
f the consequ

riodic Open 

ph of periodi
to calculate

ical relations
ix of a nano
interesting 

A. YOOSOFAN

and studied 
el, too [3,6,7

molecules de
ture of thes
s of a molec

merical value
eral differen

ngle-wall tub
yout algorith
omputed. 

OF PERIOD

molecules w
osed tubulen

al moiety [9
is depicted i

h is focused
lotted in [10
uences of th

Tubulene. 

ic open tubu
e topologica
s based on th
tube is more
advantages 

N AND M. N

up to now. 
7]. 
epend on th
se molecule
cule, graph 
es calculated

nt topologica

bulene is ge
hm [8]. In a

DIC OPEN 

which is buil
ne is derive

9]. The figu
in [10]. The 
in this articl

0]. The Figu
is paper. 

ulene based o
al indices of
he graph of 
e useful than
of construct

NAMAZI−FAR

Tubulenes a

heir structure
es. Despite 
of a molecu
d based on

al indices w

enerated by 
addition, som

TUBULEN

lt up from tw
d from C60

ure of period
periodic op

le. The preci
ure 1 shows

 

on its physic
f these sort 
them [11–13
n finding on
ting graph of

RD 

are 

es. 
its 

ule 
n a 
ith 

an 
me 

NE 

wo 
by 
dic 
pen 
ise 
s a 

cal 
of 

3]. 
nly 
f a 



OPEN 

 

molec
algorit
an ana
tubule

constr
green 
to con
level t
three l
rolls d

consec
constr
and ho
subseq

TUBULENE 

ule is the s
thm for cons
alogous app

ene which is 
The repeti

ructs the grap
and red colo

nstruct levels
to the previo
levels, three

different num
The first s

cutive pair o
ruction of th
ow a node c
quent levels 

CONSTRUCT

straightforwa
structing the
proach has b
discussed in
tion of thre
ph of the ope
ors, respecti
s of this mo
ous level, if 
 first section

mber of penta
section cons
of hexagons 
e first sectio

connects to o
is similar to

TION AND CO

ard calculat
e graph of ca
been propos
n detail in the
e connected
en tubulene.
ively. The fi
olecule. The 
any exist. B

ns, three sec
agons, hexag
sists of six 
interleaves 

on of the firs
other nodes,
 the first sec

Figure 2. 

OMPUTATION

ion of the v
arbon nanoh
sed for cons
e following 

d sections of
 These secti
irst and the s

third sectio
Based on this
cond sections
gons and hep

hexagons a
by a pentag
st level. It sh
, too. The co
ction of the f

The First Se

N OF ITS TOP

various topo
orn is propo
structing the
paragraphs.
f pentagons,
ons are show
second secti

on uses for c
s definition o
s and two th
ptagons.  
and three pe
gon. The Fig
hows the no
onstruction o
first level. 

 
ection. 

POLOGICAL 

ological ind
osed in [14]. 
e graph of 
 

, hexagons a
wn in the Fig
ions connect
conjunction 
of levels, th
hird sections

entagons, F
gure 3 has m
ode number 
of the first s

INDICES     

dices. A nov
In this artic
periodic op

and heptago
gure 1 by blu
t to each oth
of the curre
e Figure 1 h

s. Each secti

igure 2. Ea
more details 

of this secti
sections of t

83 

vel 
cle, 
pen 

ons 
ue, 
her 
ent 
has 
ion 

ach 
on 

ion 
the 



84      

 

 

arrang
which

                   

The second
gement in re
h is shown in

 

                   

d section als
spect to the 

n the Figure 4

                  

Figure 3. 

so consists o
first section

4. 

Figure 4. T

                 A

The Section

of six hexago
n. The secon

The Second S

A. YOOSOFAN

n One. 

ons and thre
nd section is 

 
Section. 

N AND M. N

 

e pentagons
connected t

NAMAZI−FAR

 with differe
to the first o

RD 

ent 
one 



OPEN 

 

shows

denote
algorit

in this
many 
readab
dynam
Severa

TUBULENE 

The third s
s the third se

 
Suppose N

es the maxi
thm of const

 
 1. Constru
 2. Constru
 3. NL = 1 
 4. WHILE
  4.1
  4.2
  4.3
  4.4
 5. END 
 
The Pytho

s paper. Pyt
open sourc

ble and cons
mic typing, g
al open sour

CONSTRUCT

section is too
ction. 

NL denotes 
imum numb
tructing open

uction of the
uction of the

E NL < ML D
. Constructio

2. Constructio
. Constructio

4. NL = NL +

n programm
hon is a po

ce modules 
istent syntax
generators, e
rce and free

TION AND CO

o simple. It c

Figure 5. T

the number 
ber of level
n periodic tu

 first section
 second sect

DO 
on of the firs
on of the thi
on of second
+ 1 

ming languag
werful open
for wide va

x, yet it has 
exceptions, 

e libraries ar

OMPUTATION

consists of s

The Third S

of levels h
ls which w
ubulene has t

n of the first 
tion of the fi

st section of 
ird section of
d section of t

ge is used to
n source and
ariety of pu
a lot of capa
very high-le

re developed

N OF ITS TOP

six connecte

 
ection. 

has been cre
e need to 
the followin

level 
rst level 

f the (NL+1)
f the (NL+1)
the (NL+1)th

o implement
d free script
urposes. It h
abilities and 
evel dynami
d for workin

POLOGICAL 

d heptagons

eated up to 
construct th

ng steps: 

th level 
)th level 
h level 

t the algorith
ting languag
has a very c
advanced fe
ic data type
ng with grap

INDICES     

s. The Figure

now, and M
he graph. T

hms discuss
ge enriched 
concise, cle
eatures such 
es and classe
phs in Pytho

85 

e 5 

ML 
The 

sed 
by 
ar, 
as 
es. 
on, 



86                                                                                A. YOOSOFAN AND M. NAMAZI−FARD 

 

such as python−graph, NetworkX, py_graph, graph−tool, igraph, etc. The NetworkX is 
used for creating and manipulating graph objects in this paper. Many types of graphs, 
including simple graphs, directed graphs, and graphs with parallel edges and self-loops are 
implemented in NetworkX [15]. The following code is the python implementation of the 
preceding algorithm for creating open tubulene. The sections and levels are connected 
together by pre, nextin, nextst. Variable nv contains the number of nodes created up to now. 

Pre=[0,0,0,0,0,0] 
nextin=[0,0,0,0,0,0,0,0,0] 
nextst=[0,0,0,0,0,0] 
nv = 0 
nv=FirstSection(nv,pre,nextin) 
nv=SecondSection(nv,nextin,nextst) 
for i in range(0,numberOfLevels-1): 
   nv=FirstSection(nv,pre,nextin) 
   ThirdSection(nextst,pre) 
   nv=SecondSection(nv,nextin,nextst) 
 

3 DRAWING THE GRAPH 

During development of the preceding algorithm, plotting the resulting graph as shown in 
Figures 4 and 5 was used to adjust the algorithm. Therefore, several free and open source 
graph drawing tools were tried out. Neato was selected for graph drawing because the 
plotted graph by Neato is close to the shape of the molecule. Neato is a part of Graphviz 
package that make layouts of undirected graphs. Graphviz is free and open source graph 
visualization which is widely used in many areas. The tools in Graphviz take description of 
a graph in a simple text language, and create diagrams in different formats, such as images 
and SVG for web pages, PDF or Postscript for inclusion in other documents. Many useful 
features for concrete diagrams have been added to Graphviz, such as options for colors, 
fonts, tabular node layouts, line styles, hyperlinks, roll, and custom shapes.  

Graphviz offers both graphical and command line tools. There exist several ways 
for using Graphviz from python, but in most cases the Graphviz command line tools are 
called to parse files containing a graph definition and render a rasterized image of the 
graph. Therefore, Neato can be either run in command line, or invoking it in python by 
“os.system” function. This is unsatisfactory for our purposes, and a more direct interface to 
the layout algorithms is desirable. There are several python interface libraries to the 
Graphviz (e.g. PyGraphviz, pydot, etc.). PyGraphviz have been chosen for this purpose in 
this research. 

Neato draws undirected graph using a variation of spring algorithm proposed by 
Kamada and Kawai [8]. The proposed algorithm places an ideal spring between every pair 
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4 TOPOLOGICAL INDICES 

A numerical invariant related to molecular graph of a chemical compound is called a 
topological index [22, 23]. Also there is a semi-empirical index which is discussed in 
[24,25]. Several different topological indices have been proposed to encode chemical 
properties of molecules [26]. These indices are calculated based on graphs of molecules or 
graphs of different kinds of networks such as social network [27]. So, by finding the graph 
of a molecule (or its adjacency matrix), computing the topological indices of that molecule 
is straightforward. 
 
4.1 THE WIENER INDEX 

The first topological index which is used in chemistry is the Wiener index. Harold Wiener 
developed and used the Wiener index to determine physicochemical properties of types of 
alkanes known as paraffin in 1947 [28]. To define, we assume that G is an indirect simple 
graph. The Wiener index, W(G), of G with n vertices is the sum of the lengths of shortest 
paths between all pairs of vertices of G. 

.0,
1 12

1)( =∑
=

∑
=

= iid
n

i

n

j
ijdGW                                                      (1) 

4.2 SZEGED INDEX 

Ivan Gutman introduced the Szeged index in 1994 [29]. Let E(G) be the set of all edges of 
G and e = uv be an edge of G. Define W(e) = nu(e) × nv(e), where nu(e) is the number of 
vertices of G closer to u than v, and nv(e) is defined analogously. The Szeged index of G is 
the sum of W(e) over all edges of G [12]. So, 
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4.3 PI INDEX 

The PI index was introduced by P. V. Khadikar in 2000 [30]. The summation over all edges 
uv of G which are not equidistant to u and v is PI index [31]. Based on the notations 
introduced in Szeged index, the PI index is defined as follows: 

∑
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5 RESULTS 

Finding the shortest paths between all nodes in a graph is the most time consuming part of 
computing of the preceding topological indices. The well known Dijkstra algorithm finds 
these shortest paths, but it is impossible to compute these topological indices based on this 
algorithm in a reasonable time. Therefore, the Floyd-Warshal algorithm is more suitable for 
this problem. This algorithm is basically equivalent to the transitive closure algorithm 
independently proposed by Roy [32] in 1959. Current version of this algorithm was 
proposed by Ingerman which used three nested for-loop. This algorithm is faster at the 
expense of memory. Therefore, the pitfall of this algorithm is the order of memory usage. 
The preceding results are computed on a computer with 12 GB main memory running 
Ubuntu 64-bit. The Table 1 shows the Wiener index, PI index and Szeged index of open 
tubulene with different level numbers. 
 
Table 1: Values of some computed topological indices of diffrenet open Tubulene with 
different number of vertex 
 

Level Number Number of 
Vertices Wiener Index PI Index Szeged Index 

1 48 5496 2652 26622 
10 480 2373096 303108 22289022 
20 960 18575496 1238388 187132182 
30 1440 62425896 2807268 646311342 
40 1920 147748296 5009748 1551890502 

50 2400 288366696 7845828 3055933662 

70 3360 790787496 15418788 8467667982 

100 4800 2304738696 31530228 24875349462 

120 5760 3982199496 45439188 43114603782 

140 6720 6323212296 61882548 68613762102 

160 7680 9438369096 80860308 102589336422 

180 8640 13438261896 102372468 146257838742 

200 9600 18433482696 126419028 200835781062 
 
The plot of these indices versus vertex numbers is more readable and clear than numbers in 
Table1. The Matplotlib visualization library is a standard package for curve plotting in 
Python. The Figures 7, 8 and 9 have been obtained using this library. The Matplotlib 
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automatically regulates the axes ratio. It shows the axes ratio on the plot. The diagram of 
the Wiener index versus vertex number is shown in Figure 7. The axes ratio of this plot is 
1010. 

 
Figure 7. The Wiener Index Versus Vertex. 

 
The diagram of the Szeged index versus vertex number is shown in Figure 8. 

 
Figure 8. The Szeged Index Versus Vertex. 
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The diagram of the PI index versus vertex number is shown in Figure 9. 

 
Figure 9. The PI Index Versus Vertex. 

 
 

Table 2: Polynomial for the Wiener Index. 

n RMS 0 1 2 3 4 5 
1 1886833697 −5214293688 1965227     
2 262437466 1771561032 −1487965 328.5    
3 1.69458e−06 −5304 155 −7e−13 0.02   
4 1.8528e−06 −5304 154.99 4e−12 0.02 2e−20  
5 1.026e−05 −5304 155 −7e−13 0.02 −1e−20 5e−25 

 
 

Table 3: Polynomial for the PI Index. 

n RMS 0 1 2 3 4 5 
1 7820939 −29239212 14422.5     
2 1.04e−08 1428 −31.5 1.375    
3 3.22e−08 1428 −31.5 1.375 3.4e−19   
4 2.27e−08 1428 −31.5 1.375 −1e−18 6e−23  
5 9.4e-08 1427.99 -31.5 1.375 -2e-18 2.e-22  
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Table 4: Polynomial for The Szeged Index. 

n RMS 0 1 2 3 4 5 
1 20635483310 −56905553562 21396835.25     
2 2886812122 19486947558 −16364897 3592.25    
3 2.802e−05 −282138 4423.25 −21.25 0.22917   
4 1.66e−05 −282137.9 4423.25 −21.25 0.22917 2e−19  
5 9.0298e−05 −282138 4423.25 −21.25 0.22917 8.7e−19 −3e−23
 

In Tables 2−4, RMS denotes the root mean square error of curve fitting. The 
polynomials recorded in Tables 2−4, when n = 3, 2, 3, are the best polynomials that is fitted 
to the Wiener, PI and Szeged indices of this molecule, respectively.  
 
6 CONCLUSIONS 

A new intuitive method for constructing the graph of open tubulene is proposed and 
discussed in this article. Several packages and tools based on Python programming 
language are used to implement the algorithm. The spring method is used to plot the 
constructed graph. A consequence of using this method is the similarity between the picture 
of open periodic tubulene and plotted graph. Three major topological indices, namely the 
Wiener, PI and Szeged indices of this molecule are calculated based on the constructed 
graph. Memory and time cost is the problems against calculating these indices unbounded. 
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me to correct the first draft of this paper.    
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